
Chapter 4

Syntax Analysis

By Varun Arora

Outline
 Role of parser

 Context free grammars

 Top down parsing

 Bottom up parsing

 Parser generators

By Varun Arora

The role of parser

Lexical
Analyzer

Parser
Source

program

token

getNext

Token

Symbol
table

Parse tree Rest of
Front End

Intermediate

representation

By Varun Arora

Uses of grammars

E -> E + T | T

T -> T * F | F

F -> (E) | id

E -> TE’

E’ -> +TE’ | Ɛ

T -> FT’

T’ -> *FT’ | Ɛ

F -> (E) | id

By Varun Arora

Error handling
 Common programming errors

 Lexical errors

 Syntactic errors

 Semantic errors

 Lexical errors

 Error handler goals

 Report the presence of errors clearly and accurately

 Recover from each error quickly enough to detect
subsequent errors

 Add minimal overhead to the processing of correct
progrms

By Varun Arora

Error-recover strategies
 Panic mode recovery
 Discard input symbol one at a time until one of

designated set of synchronization tokens is found

 Phrase level recovery
 Replacing a prefix of remaining input by some string

that allows the parser to continue

 Error productions
 Augment the grammar with productions that generate

the erroneous constructs

 Global correction
 Choosing minimal sequence of changes to obtain a

globally least-cost correction

By Varun Arora

Context free grammars
 Terminals

 Nonterminals

 Start symbol

 productions

expression -> expression + term

expression -> expression – term

expression -> term

term -> term * factor

term -> term / factor

term -> factor

factor -> (expression)

factor -> id

By Varun Arora

Derivations
 Productions are treated as rewriting rules to generate a

string

 Rightmost and leftmost derivations

 E -> E + E | E * E | -E | (E) | id

 Derivations for –(id+id)

 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id)

By Varun Arora

Parse trees
 -(id+id)
 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id)

By Varun Arora

Ambiguity
 For some strings there exist more than one parse tree

 Or more than one leftmost derivation

 Or more than one rightmost derivation

 Example: id+id*id

By Varun Arora

Elimination of ambiguity

By Varun Arora

Elimination of ambiguity (cont.)
 Idea:

 A statement appearing between a then and an else
must be matched

By Varun Arora

Elimination of left recursion
 A grammar is left recursive if it has a non-terminal A

such that there is a derivation A=> Aα

 Top down parsing methods cant handle left-
recursive grammars

 A simple rule for direct left recursion elimination:

 For a rule like:

 A -> A α|β

 We may replace it with

 A -> β A’

 A’ -> α A’ | ɛ

+

By Varun Arora

Left recursion elimination (cont.)
 There are cases like following

 S -> Aa | b
 A -> Ac | Sd | ɛ

 Left recursion elimination algorithm:
 Arrange the nonterminals in some order A1,A2,…,An.
 For (each i from 1 to n) {

 For (each j from 1 to i-1) {
 Replace each production of the form Ai-> Aj γ by the production

Ai -> δ1 γ | δ2 γ | … |δk γ where Aj-> δ1 | δ2 | … |δk

are all current Aj productions
 }
 Eliminate left recursion among the Ai-productions

 }

By Varun Arora

Left factoring
 Left factoring is a grammar transformation that is useful for

producing a grammar suitable for predictive or top-down
parsing.

 Consider following grammar:
 Stmt -> if expr then stmt else stmt

 | if expr then stmt

 On seeing input if it is not clear for the parser which
production to use

 We can easily perform left factoring:

 If we have A->αβ1 | αβ2 then we replace it with
 A -> αA’

 A’ -> β1 | β2

By Varun Arora

Left factoring (cont.)
 Algorithm

 For each non-terminal A, find the longest prefix α
common to two or more of its alternatives. If α<> ɛ,
then replace all of A-productions A->αβ1 |αβ2 | …
| αβn | γ by

 A -> αA’ | γ

 A’ -> β1 |β2 | … | βn

 Example:

 S -> I E t S | i E t S e S | a

 E -> b

By Varun Arora

By Varun Arora

Introduction
 A Top-down parser tries to create a parse tree from the

root towards the leafs scanning input from left to right

 It can be also viewed as finding a leftmost derivation
for an input string

 Example: id+id*id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

E
lm

E

T E’

lm
E

T E’

F T’

lm
E

T E’

F T’

id

lm
E

T E’

F T’

id Ɛ

lm
E

T E’

F T’

id Ɛ

+ T E’

By Varun Arora

Recursive descent parsing
 Consists of a set of procedures, one for each

nonterminal

 Execution begins with the procedure for start symbol

 A typical procedure for a non-terminal

void A() {

choose an A-production, A->X1X2..Xk

for (i=1 to k) {

if (Xi is a nonterminal

call procedure Xi();

else if (Xi equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}
By Varun Arora

Recursive descent parsing (cont)
 General recursive descent may require backtracking

 The previous code needs to be modified to allow
backtracking

 In general form it cant choose an A-production easily.

 So we need to try all alternatives

 If one failed the input pointer needs to be reset and
another alternative should be tried

 Recursive descent parsers cant be used for left-
recursive grammars

By Varun Arora

Example
S->cAd

A->ab | a Input: cad

S

c A d

S

c A d

a b

S

c A d

a

By Varun Arora

First and Follow
 First() is set of terminals that begins strings derived from

 If α=>ɛ then is also in First(ɛ)

 In predictive parsing when we have A-> α|β, if First(α)
and First(β) are disjoint sets then we can select
appropriate A-production by looking at the next input

 Follow(A), for any nonterminal A, is set of terminals a that
can appear immediately after A in some sentential form
 If we have S => αAaβ for some αand βthen a is in

Follow(A)

 If A can be the rightmost symbol in some sentential form,
then $ is in Follow(A)

*

*

By Varun Arora

Computing First
 To compute First(X) for all grammar symbols X, apply

following rules until no more terminals or ɛ can be
added to any First set:

1. If X is a terminal then First(X) = {X}.

2. If X is a nonterminal and X->Y1Y2…Yk is a production
for some k>=1, then place a in First(X) if for some i a is
in First(Yi) and ɛ is in all of First(Y1),…,First(Yi-1) that
is Y1…Yi-1 => ɛ. if ɛ is in First(Yj) for j=1,…,k then add
ɛ to First(X).

3. If X-> ɛ is a production then add ɛ to First(X)

 Example!

*

*

By Varun Arora

Computing follow
 To compute First(A) for all nonterminals A, apply

following rules until nothing can be added to any
follow set:

1. Place $ in Follow(S) where S is the start symbol

2. If there is a production A-> αBβ then everything in
First(β) except ɛ is in Follow(B).

3. If there is a production A->B or a production
A->αBβ where First(β) contains ɛ, then everything
in Follow(A) is in Follow(B)

 Example!

By Varun Arora

LL(1) Grammars
 Predictive parsers are those recursive descent parsers needing no

backtracking

 Grammars for which we can create predictive parsers are called
LL(1)
 The first L means scanning input from left to right

 The second L means leftmost derivation

 And 1 stands for using one input symbol for lookahead

 A grammar G is LL(1) if and only if whenever A-> α|βare two
distinct productions of G, the following conditions hold:
 For no terminal a do αandβ both derive strings beginning with a

 At most one of α or βcan derive empty string

 If α=> ɛ then βdoes not derive any string beginning with a
terminal in Follow(A).

*

By Varun Arora

Construction of predictive
parsing table
 For each production A->α in grammar do the

following:

1. For each terminal a in First(α) add A-> in M[A,a]

2. If ɛ is in First(α), then for each terminal b in
Follow(A) add A-> ɛ to M[A,b]. If ɛ is in First(α) and
$ is in Follow(A), add A-> ɛ to M[A,$] as well

 If after performing the above, there is no production
in M[A,a] then set M[A,a] to error

By Varun Arora

Example
E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

F
T
E
E’
T’

First Follow

{(,id}
{(,id}

{(,id}

{+,ɛ}

{*,ɛ}

{+, *,), $}
{+,), $}

{+,), $}

{), $}

{), $}

E

E’

T

T’

F

Non -

terminal

Input Symbol

id + * () $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> idBy Varun Arora

Another example
S -> iEtSS’ | a
S’ -> eS | Ɛ
E -> b

S

S’

E

Non -

terminal

Input Symbol

a b e i t $

S -> a S -> iEtSS’

S’ -> Ɛ
S’ -> eS

S’ -> Ɛ

E -> b

By Varun Arora

Non-recursive predicting parsing

a + b $

Predictive

parsing

program

output

Parsing

Table

M

stack X

Y

Z

$

By Varun Arora

Predictive parsing algorithm
Set ip point to the first symbol of w;
Set X to the top stack symbol;
While (X<>$) { /* stack is not empty */

if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a] = X->Y1Y2..Yk) {

output the production X->Y1Y2..Yk;
pop the stack;
push Yk,…,Y2,Y1 on to the stack with Y1 on top;

}
set X to the top stack symbol;

}

By Varun Arora

Example
 id+id*id$

Matched Stack Input Action

E$ id+id*id$

By Varun Arora

Error recovery in predictive parsing
 Panic mode

 Place all symbols in Follow(A) into synchronization set for
nonterminal A: skip tokens until an element of Follow(A) is seen
and pop A from stack.

 Add to the synchronization set of lower level construct the symbols
that begin higher level constructs

 Add symbols in First(A) to the synchronization set of nonterminal
A

 If a nonterminal can generate the empty string then the production
deriving can be used as a default

 If a terminal on top of the stack cannot be matched, pop the
terminal, issue a message saying that the terminal was insterted

By Varun Arora

Example
E

E’

T

T’

F

Non -

terminal

Input Symbol

id + * () $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> id

synch synch

synch synch synch

synch synch synch synch

Stack Input Action

E$)id*+id$ Error, Skip)

E$ id*+id$ id is in First(E)
TE’$ id*+id$

FT’E’$ id*+id$
idT’E’$ id*+id$

T’E’$ *+id$
*FT’E’$ *+id$

+id$FT’E’$ Error, M[F,+]=synch
+id$T’E’$ F has been poped

By Varun Arora

By Varun Arora

Introduction
 Constructs parse tree for an input string beginning at

the leaves (the bottom) and working towards the root
(the top)

 Example: id*id

E -> E + T | T
T -> T * F | F
F -> (E) | id id

F * idid*id T * id

id

F

T * F

id

F id T * F

id

F id

F

T * F

id

F id

F

E

By Varun Arora

Shift-reduce parser
 The general idea is to shift some symbols of input to

the stack until a reduction can be applied

 At each reduction step, a specific substring matching
the body of a production is replaced by the
nonterminal at the head of the production

 The key decisions during bottom-up parsing are about
when to reduce and about what production to apply

 A reduction is a reverse of a step in a derivation

 The goal of a bottom-up parser is to construct a
derivation in reverse:

 E=>T=>T*F=>T*id=>F*id=>id*idBy Varun Arora

Handle pruning
 A Handle is a substring that matches the body of a

production and whose reduction represents one step
along the reverse of a rightmost derivation

Right sentential form Handle Reducing production

id*id id F->id

F*id F

id

T->F

T*id F->id

T*F T*F E->T*F

By Varun Arora

Shift reduce parsing
 A stack is used to hold grammar symbols

 Handle always appear on top of the stack

 Initial configuration:

Stack Input

$ w$

 Acceptance configuration

Stack Input

$S $

By Varun Arora

Shift reduce parsing (cont.)
 Basic operations:

 Shift

 Reduce

 Accept

 Error

 Example: id*id

Stack Input Action

$

$id

id*id$ shift

*id$ reduce by F->id
$F *id$ reduce by T->F
$T *id$ shift
$T* id$ shift

$T*id $ reduce by F->id

$T*F $ reduce by T->T*F

$T $ reduce by E->T

$E $ accept

By Varun Arora

Handle will appear on top of
the stack

S

A

B

α β γ y z

Stack Input

$αβγ yz$

$αβB yz$

$αβBy z$

S

AB

α γ y zx

Stack Input

$αγ xyz$

$αBxy z$

By Varun Arora

Conflicts during shit reduce
parsing
 Two kind of conflicts

 Shift/reduce conflict

 Reduce/reduce conflict

 Example:

Stack Input

else …$… if expr then stmt
By Varun Arora

Reduce/reduce conflict
stmt -> id(parameter_list)

stmt -> expr:=expr

parameter_list->parameter_list, parameter

parameter_list->parameter

parameter->id

expr->id(expr_list)

expr->id

expr_list->expr_list, expr

expr_list->expr Stack Input

,id) …$… id(id

By Varun Arora

LR Parsing
 The most prevalent type of bottom-up parsers

 LR(k), mostly interested on parsers with k<=1

 Why LR parsers?

 Table driven

 Can be constructed to recognize all programming language
constructs

 Most general non-backtracking shift-reduce parsing method

 Can detect a syntactic error as soon as it is possible to do so

 Class of grammars for which we can construct LR parsers are
superset of those which we can construct LL parsers

By Varun Arora

States of an LR parser
 States represent set of items

 An LR(0) item of G is a production of G with the dot at
some position of the body:

 For A->XYZ we have following items

 A->.XYZ

 A->X.YZ

 A->XY.Z

 A->XYZ.

 In a state having A->.XYZ we hope to see a string
derivable from XYZ next on the input.

 What about A->X.YZ?
By Varun Arora

Constructing canonical LR(0)
item sets
 Augmented grammar:

 G with addition of a production: S’->S

 Closure of item sets:

 If I is a set of items, closure(I) is a set of items constructed from I by
the following rules:

 Add every item in I to closure(I)

 If A->α.Bβ is in closure(I) and B->γ is a production then add the
item B->.γ to clsoure(I).

 Example:
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.idBy Varun Arora

Constructing canonical LR(0)
item sets (cont.)
 Goto (I,X) where I is an item set and X is a grammar

symbol is closure of set of all items [A-> αX. β] where
[A-> α.X β] is in I

 Example

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(

By Varun Arora

Closure algorithm
SetOfItems CLOSURE(I) {

J=I;

repeat

for (each item A-> α.Bβ in J)

for (each prodcution B->γ of G)

if (B->.γ is not in J)

add B->.γ to J;

until no more items are added to J on one round;

return J;

By Varun Arora

GOTO algorithm
SetOfItems GOTO(I,X) {

J=empty;

if (A-> α.X β is in I)

add CLOSURE(A-> αX. β) to J;

return J;

}

By Varun Arora

Canonical LR(0) items
Void items(G’) {

C= CLOSURE({[S’->.S]});

repeat

for (each set of items I in C)

for (each grammar symbol X)

if (GOTO(I,X) is not empty and not in C)

add GOTO(I,X) to C;

until no new set of items are added to C on a round;

}

By Varun Arora

Example
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(

I5
F->id.

id

I3
T>F.

+

I6
E->E+.T
T->.T*F
T->.F
F->.(E)
F->.id

*
I7

T->T*.F
F->.(E)
F->.id

E
I8

E->E.+T
F->(E.)

)
I11

F->(E).

I9

E->E+T.
T->T.*F

T

I10

T->T*F.

F

id

+

$
acc

By Varun Arora

Use of LR(0) automaton
 Example: id*id

Line Stack Symbols Input Action

(1) 0 $ id*id$ Shift to 5

(2) 05 $id *id$ Reduce by F->id

(3) 03 $F *id$ Reduce by T->F

(4) 02 $T *id$ Shift to 7

(5) 027 $T* id$ Shift to 5

(6) 0275 $T*id $ Reduce by F->id

(7) 02710 $T*F $ Reduce by T->T*F

(8) 02 $T $ Reduce by E->T

(9) 01 $E $ accept

By Varun Arora

LR-Parsing model

a1 … ai … an $INPUT

LR Parsing
Program

Sm

Sm-1

…

$

ACTION GOTO

Output

By Varun Arora

LR parsing algorithm
let a be the first symbol of w$;
while(1) { /*repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce A->β) {
pop |β| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->β;

} else if (ACTION[s,a]=accept) break; /* parsing is done */
else call error-recovery routine;

}

By Varun Arora

Example (0) E’->E
(1) E -> E + T
(2) E-> T
(3) T -> T * F
(4) T-> F
(5) F -> (E)
(6) F->id

STATE ACTON GOTO

id + * () $ E T F

0 S5 S4 1 2 3

1 S6 Acc

2 R2 S7 R2 R2

3 R
4

R7 R4 R4

4 S5 S4 8 2 3

5 R
6

R
6

R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

id*id+id?

Line Stac
k

Symbol
s

Input Action

(1) 0 id*id+id$ Shift to 5

(2) 05 id *id+id$ Reduce by F->id

(3) 03 F *id+id$ Reduce by T->F

(4) 02 T *id+id$ Shift to 7

(5) 027 T* id+id$ Shift to 5

(6) 0275 T*id +id$ Reduce by F->id

(7) 02710 T*F +id$ Reduce by T-
>T*F

(8) 02 T +id$ Reduce by E->T

(9) 01 E +id$ Shift

(10) 016 E+ id$ Shift

(11) 0165 E+id $ Reduce by F->id

(12) 0163 E+F $ Reduce by T->F

(13) 0169 E+T` $ Reduce by E-
>E+T

(14) 01 E $ acceptBy Varun Arora

Constructing SLR parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(0) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”
 If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in

follow(A)
 If {S’->.S] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not
SLR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the

set of items containing [S’->.S]

By Varun Arora

Example grammar which is not
SLR(1) S -> L=R | R

L -> *R | id

R -> L

I0

S’->.S

S -> .L=R

S->.R

L -> .*R |

L->.id

R ->. L

I1

S’->S.

I2

S ->L.=R

R ->L.

I3

S ->R.

I4

L->*.R

R->.L

L->.*R

L->.id

I5

L -> id.

I6

S->L=.R

R->.L

L->.*R

L->.id

I7

L -> *R.

I8

R -> L.

I9

S -> L=R.

Action
=

2
Shift 6

Reduce R->L
By Varun Arora

More powerful LR parsers
 Canonical-LR or just LR method

 Use lookahead symbols for items: LR(1) items

 Results in a large collection of items

 LALR: lookaheads are introduced in LR(0) items

By Varun Arora

Canonical LR(1) items
 In LR(1) items each item is in the form: [A->α.β,a]

 An LR(1) item [A->α.β,a] is valid for a viable prefix γ if
there is a derivation S=>δAw=>δαβw, where

 Γ= δα

 Either a is the first symbol of w, or w is ε and a is $

 Example:

 S->BB

 B->aB|b

*
rm

S=>aaBab=>aaaBab*
rm

Item [B->a.B,a] is valid for γ=aaa

and w=ab

By Varun Arora

Constructing LR(1) sets of items
SetOfItems Closure(I) {

repeat
for (each item [A->α.Bβ,a] in I)

for (each production B->γ in G’)
for (each terminal b in First(βa))

add [B->.γ, b] to set I;
until no more items are added to I;
return I;

}

SetOfItems Goto(I,X) {
initialize J to be the empty set;
for (each item [A->α.Xβ,a] in I)

add item [A->αX.β,a] to set J;
return closure(J);

}

void items(G’){
initialize C to Closure({[S’->.S,$]});
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (Goto(I,X) is not empty and not in C)
add Goto(I,X) to C;

until no new sets of items are added to C;
} By Varun Arora

Example
S’->S

S->CC

C->cC

C->d

By Varun Arora

Canonical LR(1) parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(1) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ, b] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to
“shift j”

 If [A->α., a] is in Ii, then set ACTION[i,a] to “reduce A->α”
 If {S’->.S,$] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not
LR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the

set of items containing [S’->.S,$]

By Varun Arora

Example
S’->S

S->CC

C->cC

C->d

By Varun Arora

LALR Parsing Table
 For the previous example we had:

I4

C->d. , c/d

I7

C->d. , $

I47

C->d. , c/d/$

 State merges cant produce Shift-Reduce conflicts.
Why?

 But it may produce reduce-reduce conflictBy Varun Arora

Example of RR conflict in state
merging
S’->S

S -> aAd | bBd | aBe | bAe

A -> c

B -> c

By Varun Arora

An easy but space-consuming
LALR table construction
 Method:

1. Construct C={I0,I1,…,In} the collection of LR(1) items.

2. For each core among the set of LR(1) items, find all sets
having that core, and replace these sets by their union.

3. Let C’={J0,J1,…,Jm} be the resulting sets. The parsing actions
for state i, is constructed from Ji as before. If there is a
conflict grammar is not LALR(1).

4. If J is the union of one or more sets of LR(1) items, that is J =
I1 UI2…IIk then the cores of Goto(I1,X), …, Goto(Ik,X) are
the same and is a state like K, then we set Goto(J,X) =k.

 This method is not efficient, a more efficient one is
discussed in the book

By Varun Arora

Compaction of LR parsing table
 Many rows of action tables are identical

 Store those rows separately and have pointers to them
from different states

 Make lists of (terminal-symbol, action) for each state

 Implement Goto table by having a link list for each
nonterinal in the form (current state, next state)

By Varun Arora

Using ambiguous grammars
E->E+E

E->E*E

E->(E)

E->id

I0: E’->.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I1: E’->E.

E->E.+E

E->E.*E

I2: E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I3: E->.id
I4: E->E+.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I5: E->E*.E

E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I6: E->(E.)

E->E.+E

E->E.*E

I7: E->E+E.

E->E.+E

E->E.*E

I8: E->E*E.

E->E.+E

E->E.*E

I9: E->(E).

STATE ACTON GO
TO

id + * () $ E

0 S3 S2 1

1 S4 S5 Acc

2 S3 S2 6

3 R4 R4 R4 R4

4 S3 S2 7

5 S3 S2 8

6 S4 S5

7 R1 S5 R1 R1

8 R2 R2 R2 R2

9 R3 R3 R3 R3

By Varun Arora

ERROR RECOVERY IN LR
PARSING
 An LR parser will detect an error when it consults the

parsing action table and find a blank or error entry.

 Errors are never detected by consulting the goto table.

 A canonical LR parser will not make even a single
reduction before announcing the error.

 SLR and LALR parsers may make several reductions
before detecting an error, but they will never shift an
erroneous input symbol onto the stack.

By Varun Arora

Panic-mode Error Recovery
 We can implement panic-mode error recovery by

scanning down the stack until a state s with a goto on a
particular nonterminal A is found.

 Zero or more input symbols are then discarded until a
symbol a is found that can legitimately follow A.

 The parser then stacks the state GOTO(s, A) and
resumes normal parsing.

By Varun Arora

Phrase-level Recovery
 Phrase-level recovery is implemented by examining

each error entry in the LR action table and deciding on
the basis of language usage the most likely
programmer error that would give rise to that error. An
appropriate recovery procedure can then be
constructed; presumably the top of the stack and/or
first input symbol would be modified in a way deemed
appropriate for each error entry.

By Varun Arora

YACC

 YACC stands for Yet Another Compiler Compiler.

 YACC provides a tool to produce a parser for a given
grammar.

 YACC is a program designed to compile a LALR (1)
grammar.

 It is used to produce the source code of the syntactic
analyzer of the language produced by LALR (1)
grammar.

 The input of YACC is the rule or grammar and the
output is a C program.

By Varun Arora

 Input: A CFG- file.y

Output: A parser y.tab.c (yacc)

 The output file "file.output" contains the parsing
tables.

 The file "file.tab.h" contains declarations.

 The parser called the yyparse ().

 Parser expects to use a function called yylex () to
get tokens.

By Varun Arora

The basic operational sequence is as follows:

 This file contains the desired grammar in YACC format.

 It shows the YACC program.

It is the c source program created by YACC.

C Compiler

Executable file that will parse grammar given in gram.Y

By Varun Arora

