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Outline
 Role of parser

 Context free grammars

 Top down parsing

 Bottom up parsing

 Parser generators
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Uses of grammars

E -> E + T | T

T -> T * F | F

F -> (E) | id

E -> TE’

E’ -> +TE’ | Ɛ

T -> FT’

T’ -> *FT’ | Ɛ

F -> (E) | id
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Error handling
 Common programming errors

 Lexical errors

 Syntactic errors

 Semantic errors

 Lexical errors

 Error handler goals

 Report the presence of errors clearly and accurately

 Recover from each error quickly enough to detect 
subsequent errors

 Add minimal overhead to the processing of correct 
progrms
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Error-recover strategies
 Panic mode recovery
 Discard input symbol one at a time until one of 

designated set of synchronization tokens is found

 Phrase level recovery
 Replacing a prefix of remaining input by some string 

that allows the parser to continue

 Error productions
 Augment the grammar with productions that generate 

the erroneous constructs

 Global correction
 Choosing minimal sequence of changes to obtain a 

globally least-cost correction
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Context free grammars
 Terminals

 Nonterminals

 Start symbol

 productions

expression -> expression + term

expression -> expression – term

expression -> term

term -> term * factor

term -> term / factor

term -> factor

factor -> (expression)

factor -> id
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Derivations
 Productions are treated as rewriting rules to generate a 

string

 Rightmost and leftmost derivations

 E -> E + E | E * E | -E | (E) | id

 Derivations for –(id+id)

 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 
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Parse trees
 -(id+id)
 E => -E => -(E) => -(E+E) => -(id+E)=>-(id+id) 
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Ambiguity
 For some strings there exist more than one parse tree

 Or more than one leftmost derivation

 Or more than one rightmost derivation

 Example: id+id*id
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Elimination of ambiguity
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Elimination of ambiguity (cont.)
 Idea:

 A statement appearing between a then and an else
must be matched
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Elimination of left recursion
 A grammar is left recursive if it has a non-terminal A

such that there is a derivation A=> Aα

 Top down parsing methods cant handle left-
recursive grammars

 A simple rule for direct left recursion elimination:

 For a rule like:

 A -> A α|β

 We may replace it with

 A -> β A’

 A’ -> α A’ | ɛ

+
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Left recursion elimination (cont.)
 There are cases like following

 S -> Aa | b
 A -> Ac | Sd | ɛ

 Left recursion elimination algorithm:
 Arrange the nonterminals in some order A1,A2,…,An.
 For (each i from 1 to n) {

 For (each j from 1 to i-1) {
 Replace each production of the form Ai-> Aj γ by the production 

Ai -> δ1 γ | δ2 γ | … |δk γ where Aj-> δ1 | δ2 | … |δk

are all current Aj productions
 }
 Eliminate left recursion among the Ai-productions

 }
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Left factoring
 Left factoring is a grammar transformation that is useful for 

producing a grammar suitable for predictive or top-down 
parsing.

 Consider following grammar:
 Stmt -> if expr then stmt else stmt

 | if expr then stmt

 On seeing input if it is not clear for the parser which 
production to use

 We can easily perform left factoring:

 If we have A->αβ1 | αβ2   then we replace it with
 A  -> αA’

 A’ ->  β1 | β2
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Left factoring (cont.)
 Algorithm

 For each non-terminal A, find the longest prefix α
common to two or more of its alternatives. If α<> ɛ, 
then  replace all of A-productions A->αβ1 |αβ2  | … 
| αβn | γ by

 A -> αA’ | γ

 A’ -> β1 |β2  | … | βn 

 Example:

 S -> I E t S | i E t S e S | a

 E -> b
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Introduction
 A Top-down parser tries to create a parse tree from the 

root towards the leafs scanning input from left to right

 It can be also viewed as finding a leftmost derivation 
for an input string

 Example:   id+id*id

E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

E
lm

E

T E’

lm
E

T E’

F T’

lm
E

T E’

F T’

id

lm
E

T E’

F T’

id Ɛ

lm
E

T E’

F T’

id Ɛ

+ T E’
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Recursive descent parsing
 Consists of a set of procedures, one for each 

nonterminal

 Execution begins with the procedure for start symbol

 A typical procedure for a non-terminal

void A() {

choose an A-production, A->X1X2..Xk

for (i=1 to k) {

if (Xi is a nonterminal

call procedure Xi();

else if (Xi equals the current input symbol a)

advance the input to the next symbol;

else /* an error has occurred */

}

}
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Recursive descent parsing (cont)
 General recursive descent may require backtracking

 The previous code needs to be modified to allow 
backtracking

 In general form it cant choose an A-production easily.

 So we need to try all alternatives

 If one failed the input pointer needs to be reset and 
another alternative should be tried

 Recursive descent parsers cant be used for left-
recursive grammars
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Example
S->cAd

A->ab | a Input: cad

S

c A d

S

c A d

a b

S

c A d

a
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First and Follow
 First() is set of terminals that begins strings derived from 

 If α=>ɛ then is also in First(ɛ)

 In predictive parsing when we have A-> α|β, if First(α) 
and First(β) are disjoint sets then we can select 
appropriate A-production by looking at the next input

 Follow(A), for any nonterminal A, is set of terminals a that 
can appear immediately after A in some sentential form
 If we have S => αAaβ for some αand βthen a is in 

Follow(A)

 If A can be the rightmost symbol in some sentential form, 
then $ is in Follow(A)

*

*
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Computing First
 To compute First(X) for all grammar symbols X, apply 

following rules until no more terminals or ɛ can be 
added to any First set:

1. If X is a terminal then First(X) = {X}.

2. If X is a nonterminal and X->Y1Y2…Yk is a production 
for some k>=1, then place a in First(X) if for some i a is 
in First(Yi) and ɛ is in all of First(Y1),…,First(Yi-1) that 
is Y1…Yi-1 => ɛ. if ɛ is in First(Yj) for j=1,…,k then add 
ɛ to First(X).

3. If X-> ɛ is a production then add ɛ to First(X)

 Example!

*

*
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Computing follow
 To compute First(A) for all nonterminals A, apply 

following rules until nothing can be added to any 
follow set:

1. Place $ in Follow(S) where S is the start symbol

2. If there is a production A-> αBβ then everything in 
First(β) except ɛ is in Follow(B).

3. If there is a production A->B or a production               
A->αBβ where First(β) contains ɛ, then everything 
in Follow(A) is in Follow(B)

 Example!
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LL(1) Grammars
 Predictive parsers are those recursive descent parsers needing no 

backtracking

 Grammars for which we can create predictive parsers are called 
LL(1)
 The first L means scanning input from left to right

 The second L means leftmost derivation

 And 1 stands for using one input symbol for lookahead

 A grammar G is LL(1) if and only if whenever A-> α|βare two 
distinct productions of G, the following conditions hold:
 For no terminal a do αandβ both derive strings beginning with a

 At most one of α or βcan derive empty string

 If α=> ɛ then βdoes not derive any string beginning with a 
terminal in Follow(A).

*
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Construction of predictive 
parsing table
 For each production A->α in grammar do the 

following:

1. For each terminal a in First(α) add A-> in M[A,a]

2. If ɛ is in First(α), then for each terminal b in 
Follow(A) add A-> ɛ to M[A,b]. If ɛ is in First(α) and 
$ is in Follow(A), add A-> ɛ to M[A,$] as well

 If after performing the above, there is no production 
in M[A,a] then set M[A,a] to error
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Example
E -> TE’
E’ -> +TE’ | Ɛ
T -> FT’
T’ -> *FT’ | Ɛ
F -> (E) | id

F
T
E
E’
T’

First Follow

{(,id}
{(,id}

{(,id}

{+,ɛ}

{*,ɛ}

{+, *, ), $}
{+, ), $}

{+, ), $}

{), $}

{), $}

E

E’

T

T’

F

Non -

terminal

Input Symbol

id + * ( ) $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> idBy Varun Arora



Another example
S -> iEtSS’ | a
S’ -> eS | Ɛ
E -> b

S

S’

E

Non -

terminal

Input Symbol

a b e i t $

S -> a S -> iEtSS’

S’ -> Ɛ
S’ -> eS 

S’ -> Ɛ

E -> b
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Non-recursive predicting parsing

a + b $

Predictive

parsing 

program

output

Parsing

Table

M

stack X

Y

Z

$
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Predictive parsing algorithm
Set ip point to the first symbol of w;
Set X to the top stack symbol;
While (X<>$) { /* stack is not empty */

if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a] = X->Y1Y2..Yk) {

output the production X->Y1Y2..Yk;
pop the stack;
push Yk,…,Y2,Y1 on to the stack with Y1 on top;

}
set X to the top stack symbol;

}
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Example
 id+id*id$

Matched Stack Input Action

E$ id+id*id$

By Varun Arora



Error recovery in predictive parsing
 Panic mode

 Place all symbols in Follow(A) into synchronization set for 
nonterminal A: skip tokens until an element of Follow(A) is seen 
and pop A from stack.

 Add to the synchronization set of lower level construct the symbols 
that begin higher level constructs

 Add symbols in First(A) to the synchronization set of nonterminal 
A

 If a nonterminal can generate the empty string then the production 
deriving can be used as a default

 If a terminal on top of the stack cannot be matched, pop the 
terminal, issue a message saying that the terminal was insterted
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Example
E

E’

T

T’

F

Non -

terminal

Input Symbol

id + * ( ) $

E -> TE’ E -> TE’

E’ -> +TE’ E’ -> Ɛ E’ -> Ɛ

T -> FT’ T -> FT’

T’ -> *FT’ T’ -> Ɛ T’ -> Ɛ T’ -> Ɛ

F -> (E) F -> id

synch synch

synch synch synch

synch synch synch synch

Stack Input Action

E$ )id*+id$ Error, Skip )

E$ id*+id$ id is in First(E)
TE’$ id*+id$

FT’E’$ id*+id$
idT’E’$ id*+id$

T’E’$ *+id$
*FT’E’$ *+id$

+id$FT’E’$ Error, M[F,+]=synch
+id$T’E’$ F has been poped
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Introduction
 Constructs parse tree for an input string beginning at 

the leaves (the bottom) and working towards the root 
(the top)

 Example: id*id

E -> E + T | T
T -> T * F | F
F -> (E) | id id

F * idid*id T * id

id

F

T * F

id

F id T * F

id

F id

F

T * F

id

F id

F

E
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Shift-reduce parser
 The general idea is to shift some symbols of input to 

the stack until a reduction can be applied

 At each reduction step, a specific substring matching 
the body of a production is replaced by the 
nonterminal at the head of the production

 The key decisions during bottom-up parsing are about 
when to reduce and about what production to apply

 A reduction is a reverse of a step in a derivation

 The goal of a bottom-up parser is to construct a 
derivation in reverse:

 E=>T=>T*F=>T*id=>F*id=>id*idBy Varun Arora



Handle pruning
 A Handle is a substring that matches the body of a 

production and whose reduction represents one step 
along the reverse of a rightmost derivation

Right sentential form Handle Reducing production

id*id id F->id

F*id F

id

T->F

T*id F->id

T*F T*F E->T*F
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Shift reduce parsing
 A stack is used to hold grammar symbols

 Handle always appear on top of the stack

 Initial configuration:

Stack Input

$ w$

 Acceptance configuration

Stack Input

$S $
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Shift reduce parsing (cont.)
 Basic operations:

 Shift

 Reduce

 Accept

 Error

 Example: id*id

Stack Input Action

$

$id

id*id$ shift

*id$ reduce by F->id
$F *id$ reduce by T->F
$T *id$ shift
$T* id$ shift

$T*id $ reduce by F->id

$T*F $ reduce by T->T*F

$T $ reduce by E->T

$E $ accept
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Handle will appear on top of 
the stack

S

A

B

α β γ y z

Stack Input

$αβγ yz$

$αβB yz$

$αβBy z$

S

AB

α γ y zx

Stack Input

$αγ xyz$

$αBxy z$
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Conflicts during shit reduce 
parsing
 Two kind of conflicts

 Shift/reduce conflict

 Reduce/reduce conflict

 Example:

Stack Input

else …$… if expr then stmt
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Reduce/reduce conflict
stmt -> id(parameter_list)

stmt -> expr:=expr

parameter_list->parameter_list, parameter

parameter_list->parameter

parameter->id

expr->id(expr_list)

expr->id

expr_list->expr_list, expr

expr_list->expr Stack Input

,id) …$… id(id
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LR Parsing
 The most prevalent type of bottom-up parsers

 LR(k), mostly interested on parsers with k<=1

 Why LR parsers?

 Table driven

 Can be constructed to recognize all programming language 
constructs

 Most general non-backtracking shift-reduce parsing method

 Can detect a syntactic error as soon as it is possible to do so

 Class of grammars for which we can construct LR parsers are 
superset of those which we can construct LL parsers
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States of an LR parser
 States represent set of items

 An LR(0) item of G is a production of G with the dot at 
some position of the body:

 For A->XYZ we have following items

 A->.XYZ

 A->X.YZ

 A->XY.Z

 A->XYZ.

 In a state having A->.XYZ we hope to see a string 
derivable from XYZ next on the input.

 What about A->X.YZ?
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Constructing canonical LR(0) 
item sets
 Augmented grammar:

 G with addition of a production: S’->S

 Closure of item sets:

 If I is a set of items, closure(I) is a set of items constructed from I by 
the following rules:

 Add every item in I to closure(I)

 If A->α.Bβ is in closure(I) and B->γ is a production then add the 
item B->.γ to clsoure(I).

 Example:
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.idBy Varun Arora



Constructing canonical LR(0) 
item sets (cont.)
 Goto (I,X) where I is an item set and X is a grammar 

symbol is closure of set of all items [A-> αX. β] where 
[A-> α.X β] is in I

 Example

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(
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Closure algorithm
SetOfItems CLOSURE(I) {

J=I;

repeat

for (each item A-> α.Bβ in J)

for (each prodcution B->γ of G)

if (B->.γ is not in J)

add B->.γ to J;

until no more items are added to J on one round;

return J;
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GOTO algorithm
SetOfItems  GOTO(I,X) {

J=empty;

if (A-> α.X β is in I) 

add CLOSURE(A-> αX. β ) to J;

return J;

}
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Canonical LR(0) items
Void items(G’) {

C= CLOSURE({[S’->.S]});

repeat

for (each set of items I in C)

for (each grammar symbol X)

if (GOTO(I,X) is not empty and not in C)

add GOTO(I,X) to C;

until no new set of items are added to C on a round;

}
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Example
E’->E
E -> E + T | T
T -> T * F | F
F -> (E) | id

I0=closure({[E’->.E]}
E’->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

E

I1
E’->E.
E->E.+T

I2
E’->T.
T->T.*F

T

I4
F->(.E)
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id

(

I5
F->id.

id

I3
T>F.

+

I6
E->E+.T
T->.T*F
T->.F
F->.(E)
F->.id

*
I7

T->T*.F
F->.(E)
F->.id

E
I8

E->E.+T
F->(E.)

)
I11

F->(E).

I9

E->E+T.
T->T.*F

T

I10

T->T*F.

F

id

+

$
acc
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Use of LR(0) automaton
 Example: id*id

Line Stack Symbols Input Action

(1) 0 $ id*id$ Shift to 5

(2) 05 $id *id$ Reduce by F->id

(3) 03 $F *id$ Reduce by T->F

(4) 02 $T *id$ Shift to 7

(5) 027 $T* id$ Shift to 5

(6) 0275 $T*id $ Reduce by F->id

(7) 02710 $T*F $ Reduce by T->T*F

(8) 02 $T $ Reduce by E->T

(9) 01 $E $ accept
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LR-Parsing model

a1 … ai … an $INPUT

LR Parsing 
Program

Sm

Sm-1

…

$

ACTION GOTO

Output
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LR parsing algorithm
let a be the first symbol of w$;
while(1) { /*repeat forever */

let s be the state on top of the stack;
if (ACTION[s,a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[s,a] = reduce A->β) {
pop |β| symbols of the stack;
let state t now be on top of the stack;
push GOTO[t,A] onto the stack;
output the production A->β;

} else if (ACTION[s,a]=accept) break; /* parsing is done */
else call error-recovery routine;

}
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Example (0) E’->E
(1) E -> E + T
(2) E-> T
(3) T -> T * F 
(4) T-> F
(5) F -> (E) 
(6) F->id

STATE ACTON GOTO

id + * ( ) $ E T F

0 S5 S4 1 2 3

1 S6 Acc

2 R2 S7 R2 R2

3 R
4

R7 R4 R4

4 S5 S4 8 2 3

5 R
6

R
6

R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S6 S11

9 R1 S7 R1 R1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

id*id+id?

Line Stac
k

Symbol
s

Input Action

(1) 0 id*id+id$ Shift to 5

(2) 05 id *id+id$ Reduce by F->id

(3) 03 F *id+id$ Reduce by T->F

(4) 02 T *id+id$ Shift to 7

(5) 027 T* id+id$ Shift to 5

(6) 0275 T*id +id$ Reduce by F->id

(7) 02710 T*F +id$ Reduce by T-
>T*F

(8) 02 T +id$ Reduce by E->T

(9) 01 E +id$ Shift

(10) 016 E+ id$ Shift

(11) 0165 E+id $ Reduce by F->id

(12) 0163 E+F $ Reduce by T->F

(13) 0169 E+T` $ Reduce by E-
>E+T

(14) 01 E $ acceptBy Varun Arora



Constructing SLR parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(0) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to “shift j”
 If [A->α.] is in Ii, then set ACTION[i,a] to “reduce A->α” for all a in 

follow(A)
 If {S’->.S] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not 
SLR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the 

set of items containing [S’->.S]
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Example grammar which is not 
SLR(1) S -> L=R | R

L -> *R | id

R -> L

I0

S’->.S

S -> .L=R 

S->.R

L -> .*R | 

L->.id

R ->. L

I1

S’->S.

I2

S ->L.=R 

R ->L.

I3

S ->R.

I4

L->*.R

R->.L

L->.*R

L->.id

I5

L -> id.

I6

S->L=.R

R->.L

L->.*R

L->.id

I7

L -> *R.

I8

R -> L.

I9

S -> L=R.

Action
=

2
Shift 6

Reduce R->L
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More powerful LR parsers
 Canonical-LR or just LR method

 Use lookahead symbols for items: LR(1) items

 Results in a large collection of items

 LALR: lookaheads are introduced in LR(0) items
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Canonical LR(1) items
 In LR(1) items each item is in the form: [A->α.β,a]

 An LR(1) item [A->α.β,a] is valid for a viable prefix γ if 
there is a derivation S=>δAw=>δαβw, where

 Γ= δα

 Either a is the first symbol of w, or w is ε and a is $

 Example:

 S->BB

 B->aB|b

*
rm

S=>aaBab=>aaaBab*
rm

Item [B->a.B,a] is valid for γ=aaa

and w=ab 
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Constructing LR(1) sets of items
SetOfItems Closure(I) {

repeat
for (each item [A->α.Bβ,a] in I)

for (each production B->γ in G’)
for (each terminal b in First(βa))

add [B->.γ, b] to set I;
until no more items are added to I;
return I;

}

SetOfItems Goto(I,X) {
initialize J to be the empty set;
for (each item [A->α.Xβ,a] in I)

add item [A->αX.β,a] to set J;
return closure(J);

}

void items(G’){
initialize C to Closure({[S’->.S,$]});
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (Goto(I,X) is not empty and not in C)
add Goto(I,X) to C;

until no new sets of items are added to C;
} By Varun Arora



Example
S’->S

S->CC

C->cC

C->d
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Canonical LR(1) parsing table
 Method

 Construct C={I0,I1, … , In}, the collection of LR(1) items for G’
 State i is constructed from state Ii:

 If [A->α.aβ, b] is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to 
“shift j”

 If [A->α., a] is in Ii, then set ACTION[i,a] to “reduce A->α”
 If {S’->.S,$] is in Ii, then set ACTION[I,$] to “Accept”

 If any conflicts appears then we say that the grammar is not 
LR(1).

 If GOTO(Ii,A) = Ij then GOTO[i,A]=j
 All entries not defined by above rules are made “error”
 The initial state of the parser is the one constructed from the 

set of items containing [S’->.S,$]

By Varun Arora



Example
S’->S

S->CC

C->cC

C->d
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LALR Parsing Table
 For the previous example we had:

I4

C->d. ,   c/d

I7

C->d. ,   $

I47

C->d. ,   c/d/$

 State merges cant produce Shift-Reduce conflicts. 
Why?

 But it may produce reduce-reduce conflictBy Varun Arora



Example of RR conflict in state 
merging
S’->S

S -> aAd | bBd | aBe | bAe

A -> c

B -> c
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An easy but space-consuming 
LALR table construction
 Method:

1. Construct C={I0,I1,…,In} the collection of LR(1) items.

2. For each core among the set of LR(1) items, find all sets 
having that core, and replace these sets by their union.

3. Let C’={J0,J1,…,Jm} be the resulting sets. The parsing actions 
for state i, is constructed from Ji as before. If there is a 
conflict grammar is not LALR(1).

4. If J is the union of one or more sets of LR(1) items, that is J = 
I1 UI2…IIk then the cores of Goto(I1,X), …, Goto(Ik,X) are 
the same and is a state like K, then we set Goto(J,X) =k.

 This method is not efficient, a more efficient one is 
discussed in the book
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Compaction of LR parsing table
 Many rows of action tables are identical

 Store those rows separately and have pointers to them 
from different states

 Make lists of (terminal-symbol, action) for each state

 Implement Goto table by having a link list for each 
nonterinal in the form (current state, next state)
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Using ambiguous grammars
E->E+E

E->E*E

E->(E)

E->id

I0: E’->.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I1: E’->E.

E->E.+E

E->E.*E

I2: E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I3: E->.id
I4: E->E+.E

E->.E+E

E->.E*E

E->.(E)

E->.id

I5:  E->E*.E

E->(.E)

E->.E+E

E->.E*E

E->.(E)

E->.id

I6: E->(E.)

E->E.+E

E->E.*E

I7: E->E+E.

E->E.+E

E->E.*E

I8: E->E*E.

E->E.+E

E->E.*E

I9: E->(E).

STATE ACTON GO
TO

id + * ( ) $ E

0 S3 S2 1

1 S4 S5 Acc

2 S3 S2 6

3 R4 R4 R4 R4

4 S3 S2 7

5 S3 S2 8

6 S4 S5

7 R1 S5 R1 R1

8 R2 R2 R2 R2

9 R3 R3 R3 R3
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ERROR RECOVERY IN LR 
PARSING
 An LR parser will detect an error when it consults the 

parsing action table and find a blank or error entry. 

 Errors are never detected by consulting the goto table. 

 A canonical LR parser will not make even a single 
reduction before announcing the error. 

 SLR and LALR parsers may make several reductions 
before detecting an error, but they will never shift an 
erroneous input symbol onto the stack.
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Panic-mode Error Recovery
 We can implement panic-mode error recovery by 

scanning down the stack until a state s with a goto on a 
particular nonterminal A is found. 

 Zero or more input symbols are then discarded until a 
symbol a is found that can legitimately follow A. 

 The parser then stacks the state GOTO(s, A) and 
resumes normal parsing. 
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Phrase-level Recovery
 Phrase-level recovery is implemented by examining 

each error entry in the LR action table and deciding on 
the basis of language usage the most likely 
programmer error that would give rise to that error. An 
appropriate recovery procedure can then be 
constructed; presumably the top of the stack and/or 
first input symbol would be modified in a way deemed 
appropriate for each error entry.
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YACC

 YACC stands for Yet Another Compiler Compiler.

 YACC provides a tool to produce a parser for a given 
grammar.

 YACC is a program designed to compile a LALR (1) 
grammar.

 It is used to produce the source code of the syntactic 
analyzer of the language produced by LALR (1) 
grammar.

 The input of YACC is the rule or grammar and the 
output is a C program.
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 Input: A CFG- file.y

Output: A parser y.tab.c (yacc)

 The output file "file.output" contains the parsing 
tables.

 The file "file.tab.h" contains declarations.

 The parser called the yyparse ().

 Parser expects to use a function called yylex () to 
get tokens.
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The basic operational sequence is as follows:

 This file contains the desired grammar in YACC format.

 It shows the YACC program.

It is the c source program created by YACC.

C Compiler

Executable file that will parse grammar given in gram.Y
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